3.121 \(\int \frac{\tan (c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=98 \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{1}{2 a d \sqrt{a+i a \tan (c+d x)}}-\frac{1}{3 d (a+i a \tan (c+d x))^{3/2}} \]

[Out]

-ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])]/(2*Sqrt[2]*a^(3/2)*d) - 1/(3*d*(a + I*a*Tan[c + d*x])^(
3/2)) + 1/(2*a*d*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0816194, antiderivative size = 98, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {3526, 3479, 3480, 206} \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{1}{2 a d \sqrt{a+i a \tan (c+d x)}}-\frac{1}{3 d (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

-ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])]/(2*Sqrt[2]*a^(3/2)*d) - 1/(3*d*(a + I*a*Tan[c + d*x])^(
3/2)) + 1/(2*a*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 3526

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^m)/(2*a*f*m), x] + Dist[(b*c + a*d)/(2*a*b), Int[(a + b*Tan[e + f*x])^(m + 1),
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0]

Rule 3479

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(a + b*Tan[c + d*x])^n)/(2*b*d*n), x] +
Dist[1/(2*a), Int[(a + b*Tan[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0]

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tan (c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx &=-\frac{1}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac{i \int \frac{1}{\sqrt{a+i a \tan (c+d x)}} \, dx}{2 a}\\ &=-\frac{1}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{1}{2 a d \sqrt{a+i a \tan (c+d x)}}-\frac{i \int \sqrt{a+i a \tan (c+d x)} \, dx}{4 a^2}\\ &=-\frac{1}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{1}{2 a d \sqrt{a+i a \tan (c+d x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{2 a d}\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{1}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{1}{2 a d \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.568225, size = 124, normalized size = 1.27 \[ -\frac{i \left (e^{2 i (c+d x)}+2 e^{4 i (c+d x)}-3 e^{3 i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \sinh ^{-1}\left (e^{i (c+d x)}\right )-1\right )}{3 a d \left (1+e^{2 i (c+d x)}\right )^2 (\tan (c+d x)-i) \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-I/3)*(-1 + E^((2*I)*(c + d*x)) + 2*E^((4*I)*(c + d*x)) - 3*E^((3*I)*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))
]*ArcSinh[E^(I*(c + d*x))]))/(a*d*(1 + E^((2*I)*(c + d*x)))^2*(-I + Tan[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.018, size = 72, normalized size = 0.7 \begin{align*}{\frac{1}{d} \left ( -{\frac{\sqrt{2}}{4}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{a+ia\tan \left ( dx+c \right ) }{\frac{1}{\sqrt{a}}}} \right ){a}^{-{\frac{3}{2}}}}-{\frac{1}{3} \left ( a+ia\tan \left ( dx+c \right ) \right ) ^{-{\frac{3}{2}}}}+{\frac{1}{2\,a}{\frac{1}{\sqrt{a+ia\tan \left ( dx+c \right ) }}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

1/d*(-1/4/a^(3/2)*2^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))-1/3/(a+I*a*tan(d*x+c))^(3/2)+1
/2/a/(a+I*a*tan(d*x+c))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.22367, size = 803, normalized size = 8.19 \begin{align*} -\frac{{\left (3 \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{1}{a^{3} d^{2}}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left ({\left (2 \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{1}{a^{3} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 3 \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{1}{a^{3} d^{2}}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (-{\left (2 \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{1}{a^{3} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (2 \, e^{\left (4 i \, d x + 4 i \, c\right )} + e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-4 i \, d x - 4 i \, c\right )}}{12 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/12*(3*sqrt(1/2)*a^2*d*sqrt(1/(a^3*d^2))*e^(4*I*d*x + 4*I*c)*log((2*sqrt(1/2)*a^2*d*sqrt(1/(a^3*d^2))*e^(2*I
*d*x + 2*I*c) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x
 - I*c)) - 3*sqrt(1/2)*a^2*d*sqrt(1/(a^3*d^2))*e^(4*I*d*x + 4*I*c)*log(-(2*sqrt(1/2)*a^2*d*sqrt(1/(a^3*d^2))*e
^(2*I*d*x + 2*I*c) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c))*e^(-
I*d*x - I*c)) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(2*e^(4*I*d*x + 4*I*c) + e^(2*I*d*x + 2*I*c) - 1)*e^
(I*d*x + I*c))*e^(-4*I*d*x - 4*I*c)/(a^2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan{\left (c + d x \right )}}{\left (a \left (i \tan{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)/(a*(I*tan(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (d x + c\right )}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(tan(d*x + c)/(I*a*tan(d*x + c) + a)^(3/2), x)